### F.T.-I.R. SPECTRA OF OLIGO- AND POLY-NUCLEOTIDES\*,

ANNE-MARIE SEUVRE,

Laboratoire de Chimie des Oligomères, Faculté des Sciences et Techniques de Rouen, 76130 Mont Saint Aignan (France)

AND MOHAMED MATHLOUTHI

Département de Chimie, Faculté des Sciences, Université de Reims, B.P. 347, Moulin de la Housse, 51062 Reims Cedex (France)

(Received December 9th, 1986; accepted for publication, April 1st, 1987)

### **ABSTRACT**

Fourier-transform infrared (F.t.-i.r.) spectra of some synthetic mono-, oligo-, and poly-nucleotides and a natural DNA extracted from crab gonad have been recorded. Assignments of the observed frequencies are proposed by reference to our previous interpretation of laser-Raman and F.t.-i.r. spectra of constituents of nucleic acids. The spectra reflected structural differences between poly[d(A-T).d(A-T)] and crab gonad DNA (which is extremely rich in d(A-T) base-pairing). Such differences are mainly due to the effect of hydration on the conformational properties of natural DNA. Although the degree of complexity of the molecules investigated is higher than that of mononucleotides, most of the characteristic i.r. bands remain recognizable and assignable by comparison with the spectra of nucleic acid constituents previously studied.

## INTRODUCTION

Infrared spectroscopy is recognized as one of the most powerful tools for investigating the structure of biomolecules. The recent advent of Fourier-transform infrared spectroscopy (F.t.-i.r.) has afforded detailed information at the molecular level through data processing of digitized spectra<sup>2</sup>. However, interpretation of F.t.-i.r. spectra implies knowledge of the chemical structure of the molecule studied and an approximate correlation of observed bands with functional groups. Both conditions necessary for the advantageous application of modern computerized i.r. techniques to the study of nucleic acids are provided by early work of Tipson<sup>3,4</sup>.

The nature of the base, the nature and the ring structure of the sugar, the stereochemical disposition of the glycosidic linkage, and the position of the phosphate group in nucleotides were actively studied in a series of early papers by

<sup>\*</sup>F.t.-i.r. and Laser-Raman Spectra of Constituents of Nucleic Acids, Part VI; For Part V, see ref. 1. 
†Dedicated to Dr. R. Stuart Tipson.

TABLE I  $\\ \text{BANDS OBSERVED$^a$ in the f.t.-1.r. spectrum of guanylyl-(3'$\to$5')-adenosine }$ 

| D-Ribose | Guanine | Adenine | Guanylyl-<br>(3'→5')-<br>adenosine      | Assignments                                                       |
|----------|---------|---------|-----------------------------------------|-------------------------------------------------------------------|
|          | 603     |         |                                         |                                                                   |
| 628      | 000     | 622     |                                         |                                                                   |
| 020      | 648     | 642     | 644                                     | A + G (breathing)                                                 |
| 655      | 0.0     | · · -   | • • • • • • • • • • • • • • • • • • • • | 11 / C (010uumg)                                                  |
|          |         | 668     |                                         |                                                                   |
|          | 690     |         | 693                                     | G                                                                 |
|          | 704     |         |                                         |                                                                   |
| 725      | 727     | 725     | 722                                     | $A[\nu(C-C), \nu(C-N)] + G + R$ $[\delta(C-C-O)]$                 |
| 750      |         |         |                                         | [0(0 0 0)]                                                        |
|          | 780     |         | 781                                     | G                                                                 |
|          | 790     | 800     |                                         |                                                                   |
| 804      |         |         |                                         |                                                                   |
|          |         |         | 811                                     | P                                                                 |
|          | 852     | 850     |                                         |                                                                   |
| 866      |         |         |                                         |                                                                   |
|          | 880     | 874     | 875                                     | A + G                                                             |
| 890      |         |         |                                         |                                                                   |
| 910      |         | 913     | 911                                     | $A[r(NH_2)] + R[\nu(C-C)]$                                        |
| 922      |         |         |                                         |                                                                   |
|          |         | 940     |                                         |                                                                   |
| 950      | 950     |         | 948                                     | $A + G[\delta(N-C=N) \text{ and } \delta(N-C-N)]$                 |
| 957      |         |         |                                         | _                                                                 |
| 1016     |         |         | 994                                     | P                                                                 |
| 1016     |         |         |                                         |                                                                   |
| 1035     | 1040    |         | 1055                                    |                                                                   |
| 1076     | 1043    |         | 1055                                    | G<br>PISC O IVI                                                   |
| 1076     |         |         | 1075                                    | R[&(C-O-H)]                                                       |
| 1116     |         |         | 1090                                    | R                                                                 |
| 1110     | 1120    | 1126    | 1128                                    | $A[\nu(C-2-N-1=C-6), \\ \nu(C-5-N-7=C-8)] + G \\ [\delta(C-N=C)]$ |
| 1135     |         |         |                                         | [-(, -)]                                                          |
| 1150     | 1150    |         |                                         |                                                                   |
|          |         | 1156    |                                         |                                                                   |
| 1160     |         |         |                                         |                                                                   |
| 1175     | 1175    |         | 1180                                    | $A + G[\delta(C-8-H)]$                                            |
| 1220     | 1216    |         | 1231                                    | P                                                                 |
| 1245     |         | 1254    |                                         |                                                                   |
|          | 1264    |         |                                         |                                                                   |
| 1280     |         |         |                                         |                                                                   |
|          |         | 4046    | 1301                                    |                                                                   |
| 1216     |         | 1310    |                                         |                                                                   |
| 1315     |         |         |                                         |                                                                   |
| 1320     |         | 1226    | 1225                                    | AT (C XI) (C XII)                                                 |
| 1240     |         | 1336    | 1335                                    | $A[\nu(C-N), \nu(C=N)]$                                           |
| 1340     |         |         |                                         |                                                                   |
| 1365     | 1375    | 1270    |                                         |                                                                   |
|          | 13/3    | 1370    |                                         |                                                                   |

Table I (continued)

| D-Ribose | Guanine | Adenine | Guanylyl-<br>(3'→5')-<br>adenosine | Assignments                                 |
|----------|---------|---------|------------------------------------|---------------------------------------------|
| 1380     |         |         | 1381<br>1400                       | R                                           |
| 1415     |         |         |                                    |                                             |
| 1440     | 1420    | 1420    | 1420                               | $A + G[\delta(N-7=C-8-H)]$                  |
| 1455     |         | 1453    |                                    |                                             |
| 1-155    | 1465    | 1455    |                                    |                                             |
|          | 1.00    | 1470    |                                    |                                             |
|          | 1480    |         | 1483                               | $G[\nu(N-7=C-8) \text{ and } \nu(C-8-N-9)]$ |
|          |         | 1510    |                                    |                                             |
|          |         |         | 1536                               |                                             |
|          | 1566    |         |                                    |                                             |
|          |         |         | 1579                               |                                             |
| 1.00     |         | 1606    | 1606                               | $A[\nu(C=N),\nu(C=C)]$                      |
| 1635     | 1540    |         | 1644                               | •                                           |
|          | 1640    |         | 1644<br>1650                       | G                                           |
|          |         |         | 1656                               |                                             |
|          | 1676    | 1675    | 1050                               |                                             |
|          | 20.0    | 2015    | 1694                               |                                             |
|          | 1700    |         | ****                               |                                             |

<sup>&</sup>quot;Key:  $\delta$  = bending mode;  $\nu$  = stretching mode; r = rocking mode; A = adenine (detailed assignments are given in ref. 8); G = guanine (detailed assignments are given in ref. 1); R = D-ribose (detailed assignments are given in ref. 7); P = phosphate.

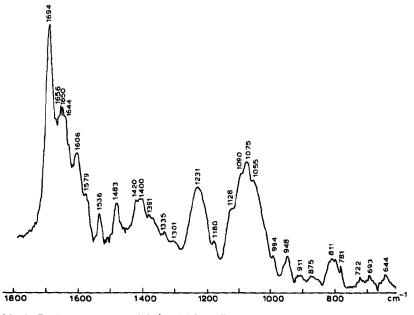



Fig. 1. F.t.-i.r. spectrum of solid guanylyl-(3'→5')-adenosine sodium salt.

Levene and Tipson<sup>5</sup>. One of the most extensive lists of i.r. bands and corresponding functional groups in carbohydrates and derivatives is also provided by Tipson<sup>6</sup>. We have recently discussed the vibrational spectra of the two sugars<sup>7</sup> of nucleic acids, and of adenine<sup>8</sup>, thymine<sup>9</sup>, cytidine<sup>10</sup>, guanine<sup>1</sup> and their associated nucleosides, and have assigned most of the observed vibrations. Our objective was to use the interpretation of spectra of constituents of nucleic acids as a basis for analysis of the vibrational spectra of polynucleotides and nucleic acids. We now propose assignments of the observed F.t.-i.r. bands in the spectra of some mono-, oligo-, and poly-nucleotides and a natural DNA by comparison with the spectra previously studied<sup>1,7-10</sup>.

#### **EXPERIMENTAL**

The F.t.-i.r. spectra of solid nucleotides were recorded with a Nicolet Fourier-transform infrared spectrometer Model 7199 for KBr pellets. Cytidine 5'-monophosphate, guanosine 2'-monophosphate, guanylyl- $(3'\rightarrow5')$ -adenosine, cytidylyl- $(2'\rightarrow5')$ -guanosine, poly[A] [poly(5'-adenylic acid)], poly[G] [poly(5'-guanylic acid)], poly[d(G-C)] [poly(deoxyguanylic-deoxycytidylic acid)] and poly[d(A-T).(d(A-T)] [poly(deoxyadenylicthymidylic acid)] were Sigma products. DNA from crab gonad was prepared by Guillé according to a previously published<sup>11</sup> technique. The range of frequencies explored was  $1800-600 \text{ cm}^{-1}$  and the wavenumbers are accurate to within  $\pm 2 \text{ cm}^{-1}$ .

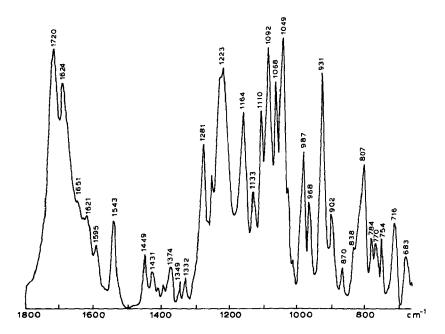



Fig. 2. F.t.-i.r. spectrum of solid cytidine 5'-monophosphate (free acid, crystalline).

### RESULTS AND DISCUSSION

A. Synthetic nucleotides. — The F.t.-i.r. spectra of synthetic nucleotides are shown in Figs. 1-7. Assignments of the observed frequencies are proposed in Tables I-VII, respectively, for guanylyl- $(3'\rightarrow 5')$ -adenosine, cytidine 5'-monophosphate, cytidylyl-(2' -> 5')-guanosine, poly[A], guanosine 2'-monophosphate, poly[G], and poly[d(G-C)]. In these tables are listed the observed frequencies for the sugar (Dribose or 2-deoxy-D-erythro-pentose "2-deoxy-D-ribose"), the base and/or the nucleoside associated with the nucleotide investigated. Attribution of the observed frequencies to stretching or bending modes is denoted in the tables by R, D, A, C, G, Ad, Cy, Go when the vibration has as its origin respectively D-ribose, 2-deoxy-D-ribose, adenine, cytosine, guanine, adenosine, cytidine, or guanosine. The assignments are based on previously<sup>1,7-10</sup> discussed attributions of frequencies observed in the spectra of nucleic acid constituents. Importantly, most of the bands observed in the F.t.-i.r. spectra of nucleotides could be assigned by comparison with the preceding results<sup>1,7-10</sup>. However a slight shift towards higher frequencies, probably because of the constraint introduced by the bonds between monomers, is observed. It may be noted that the number of frequencies assignable to 2-deoxy-Dribose (D) in the spectrum of poly[d(G-C)] (see Table VI) is higher than that of D-ribose (R) in the polyribonucleotide, poly[G] (Table V). Such a result is comparable to what has previously been noted for thymidine. Indeed, vibrations of the

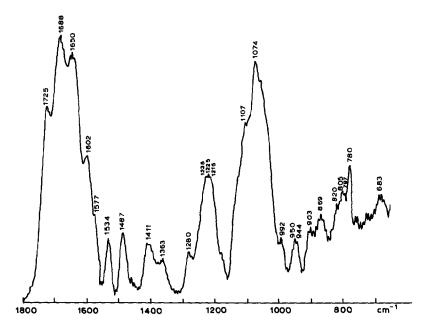
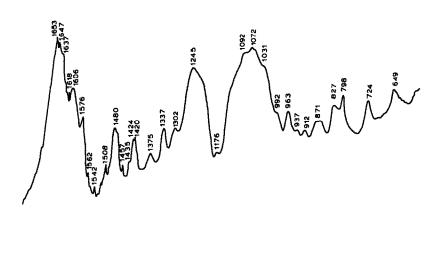



Fig. 3. F.t.-i.r. spectrum of solid cytidylyl- $(2'\rightarrow 5')$ -guanosine ammonium salt.

TABLE II

BANDS OBSERVED<sup>a</sup> IN THE F.T.-I.R. SPECTRUM OF CYTIDINE 5'-MONOPHOSPHATE


| D-Ribose | Cytosine | Cytidine | Cytidine 5'-<br>monophospha | Assignments<br>ate                                   |
|----------|----------|----------|-----------------------------|------------------------------------------------------|
|          | 602      |          |                             |                                                      |
|          |          | 621      | 621                         | Су                                                   |
| 628      |          | 630      |                             |                                                      |
| 655      |          | 664      |                             |                                                      |
|          |          |          | 683                         |                                                      |
|          | 700      |          |                             |                                                      |
|          |          | 715      | 716                         | Су                                                   |
| 725      |          |          |                             |                                                      |
|          |          | 735      |                             |                                                      |
| 750      | 758      | 757      | 754                         | R + C + Cy                                           |
|          |          |          | 770                         |                                                      |
|          | 783      |          | 784                         | $C[\nu(ring)]$                                       |
|          | 794      | 790      |                             |                                                      |
| 804      |          |          | 807                         |                                                      |
|          | 822      | 817      |                             |                                                      |
|          |          | 845      | 838                         | Су                                                   |
|          |          | 855      |                             |                                                      |
| 866      |          | 872      | 870                         | Су                                                   |
| 890      |          |          |                             |                                                      |
|          |          |          | 902                         |                                                      |
| 910      |          |          |                             |                                                      |
| 922      |          |          |                             |                                                      |
|          |          |          | 931                         | P                                                    |
|          |          | 943      |                             |                                                      |
| 950      |          |          |                             |                                                      |
| 957      |          |          |                             |                                                      |
|          | 966      |          | 968                         | C[\(\nu(C-4-C-5))]                                   |
|          | 995      | 984      | 987                         | C[8(C-4-C-5-H)]                                      |
|          | 1012     |          |                             |                                                      |
| 1016     |          |          |                             |                                                      |
| 1035     |          | 1034     |                             |                                                      |
|          |          | 1054     | 1049                        | Су                                                   |
| 1096     |          |          | 1 <b>06</b> 8               | $R[\delta(C-O-H)]$                                   |
| 1086     |          |          | 1092                        | R                                                    |
|          | 1100     | 1102     |                             |                                                      |
| 1116     |          |          | 1110                        |                                                      |
| 1135     |          | 1137     | 1133                        | Cy + R                                               |
| 1150     | 1155     | 1154     |                             |                                                      |
| 1160     |          |          | 1164                        |                                                      |
| 1175     |          |          |                             | R                                                    |
|          |          | 1192     |                             |                                                      |
|          |          | 1213     |                             |                                                      |
| 1220     |          |          | 1223                        | R                                                    |
| 1245     | 1240     | 1248     |                             |                                                      |
| 1280     | 1280     |          | 1281                        | $R[\tau(CH_2)] + C[\nu(C-2-N-1)]$ and $\nu(C-6-N-1)$ |
|          |          | 1291     |                             | · <del>-</del>                                       |
| 1315     |          | 1309     |                             |                                                      |
| 1320     |          |          |                             |                                                      |
|          |          |          | 1332                        |                                                      |

1332

Table II (continued)

| D-Ribose | Cytosine | Cytidine | Cytidine 5'-<br>monophosphat | Assignments<br>e            |
|----------|----------|----------|------------------------------|-----------------------------|
| 1340     |          | 1340     | 1349                         | R + Cy                      |
| 1366     |          | 1366     |                              | •                           |
| 1380     |          | 1376     | 1374                         | $C[\delta(C=C-H)] + R + Cy$ |
|          |          | 1395     |                              |                             |
|          |          | 1403     |                              |                             |
| 1415     |          |          |                              |                             |
|          |          | 1432     | 1431                         | Су                          |
| 1440     |          |          |                              |                             |
| 1445     |          |          | 1449                         |                             |
|          | 1469     | 1463     |                              |                             |
|          | 1505     | 1500     |                              |                             |
|          |          | 1532     |                              |                             |
|          | 1540     |          | 1543                         | C(8(N-H)]                   |
|          |          | 1605     | 1595                         | Су                          |
|          | 1616     |          | 1621                         | $C[\nu(C-5=C-6)]$           |
| 1635     | 1635     |          |                              |                             |
|          |          | 1648     | 1651                         | Су                          |
|          | 1667     | 1660     |                              |                             |
|          |          |          | 1694                         |                             |
|          | 1705     |          |                              |                             |
|          |          |          | 1720                         |                             |

«Key:  $\delta$  = bending mode;  $\nu$  = stretching mode;  $\tau$  = twisting mode; C = cytosine; Cy = cytidine (for C and Cy, detailed assignments are given in ref. 10); R = D-ribose (detailed assignments are given in ref. 7); P = phosphate.



1600 1400 1200 1000 800 600 cm<sup>-1</sup>

Fig. 4. F.t.-i.r. spectrum of solid poly[A] [poly(5'-adenylic acid), potassium salt, crystalline].

TABLE III  ${\rm BANDS\ OBSERVED}^a\ {\rm IN\ THE\ F.T.-I.R.\ SPECTRUM\ OF\ CYTIDYLYL-(2'\to5')-GUANOSINE}$ 

| D-Ribose     | Cytosine    | Guanine    | Cytidylyl-<br>(2'→5')-<br>guanosine | Assignments                                       |
|--------------|-------------|------------|-------------------------------------|---------------------------------------------------|
|              | 602         | 603        |                                     |                                                   |
| 628          |             | 640        |                                     |                                                   |
| 655          |             | 648        |                                     |                                                   |
|              |             | 690        | 683                                 | G                                                 |
|              | 700         | 704        |                                     |                                                   |
| 725          |             | 704<br>727 |                                     |                                                   |
| 750          |             | 121        |                                     |                                                   |
|              | <b>75</b> 8 |            |                                     |                                                   |
|              | 783         | 780<br>780 | 780                                 | $C[\nu(ring)] + G$                                |
|              | 794         | 790        | 797                                 | C[breathing mode]                                 |
| 804          | 724         |            | 805                                 | R[δ(C-C-O)]                                       |
|              | 822         |            | 820                                 | C[δ(N-H)]                                         |
| 0.00         |             | 852        | 040                                 | PF (A A)                                          |
| 866          |             | 880        | 869                                 | R[v(C-C)]                                         |
| 890          |             | 300        |                                     |                                                   |
|              |             |            | 903                                 | P                                                 |
| 910          |             |            |                                     |                                                   |
| 922          |             |            | 944                                 |                                                   |
| 950          |             | 950        | 950                                 | $R + G[\delta(N-C=N) \text{ and } \delta(N-C-N)]$ |
| 957          |             |            |                                     | , , ,                                             |
|              | 966<br>995  |            | 000                                 |                                                   |
|              | 1012        |            | 992                                 |                                                   |
| 1016         |             |            |                                     |                                                   |
| 1035         |             |            |                                     |                                                   |
| 1076         |             | 1043       | 1074                                | BINC O III                                        |
| 1086         |             |            | 1074                                | R[δ(C-O-H)]                                       |
|              | 1100        |            | 1107                                | C[8(N-1-C-6-H)]                                   |
| 1116         |             | 1120       |                                     |                                                   |
| 1135<br>1150 |             | 1150       |                                     |                                                   |
| 1150         | 1155        | 1150       |                                     |                                                   |
| 1160         |             |            |                                     |                                                   |
| 1175         |             | 1175       | 1015                                | OF (OA NWAN)                                      |
| 1220         |             | 1216       | 1215<br>1225                        | G[\nu(C-2-NH <sub>2</sub> )]<br>R                 |
| 1220         | 1240        |            | 1235                                | C[\(\nu(C-4-N-4)\)]                               |
| 1245         |             | 1264       |                                     |                                                   |
| 1280         | 1280        |            | 1280                                | $R + C[\nu(C-2-N-1) \text{ and } \nu(C-6-N-1)]$   |
| 1315<br>1320 |             |            |                                     |                                                   |
| 1340         |             |            |                                     |                                                   |
| 1366         | 1366        |            | 1363                                | $R[w(CH_2)] + C[\delta(C=C-H)]$                   |
|              |             | 1375       |                                     |                                                   |

Table III (continued)

| D-Ribose | Cytosine | Guanine | Cytidylyl-<br>(2'→5')-<br>guanosine | Assignments                                 |
|----------|----------|---------|-------------------------------------|---------------------------------------------|
| 1380     |          |         |                                     |                                             |
| 1415     |          |         | 1411                                | R                                           |
|          |          | 1420    |                                     |                                             |
| 1440     |          |         |                                     |                                             |
| 1455     |          |         |                                     |                                             |
|          |          | 1465    |                                     |                                             |
|          | 1469     |         |                                     |                                             |
|          |          | 1480    | 1487                                | $G[\nu(N-7=C-8) \text{ and } \nu(C-8-N-9)]$ |
|          | 1505     |         |                                     |                                             |
|          | 1540     |         | 1534                                | C[8(N-H)]                                   |
|          |          | 1554    |                                     |                                             |
|          |          | 1566    |                                     |                                             |
|          |          |         | 1577                                | $G[\nu(C-2=N-3)]$                           |
|          |          |         | 1602                                |                                             |
|          | 1616     |         |                                     |                                             |
| 1635     | 1635     |         |                                     |                                             |
|          |          | 1640    |                                     |                                             |
|          |          |         | 1650                                | G                                           |
|          | 1667     |         |                                     |                                             |
|          |          | 1676    |                                     | _                                           |
|          | 4705     |         | 1688                                | G                                           |
|          | 1705     | 1700    | 4.55                                | mt (n n) nn=1)1 n                           |
|          |          |         | 1725                                | $G[\nu(C=O), \delta(NH_2)] + C$             |

"Key:  $\delta$  = bending mode;  $\nu$  = stretching mode; w = wagging mode; G = guanine (detailed assignments are given in ref. 1); C = cytosine (detailed assignments are given in ref. 10); R = D-ribose (detailed assignments are given in ref. 7); P = phosphate.

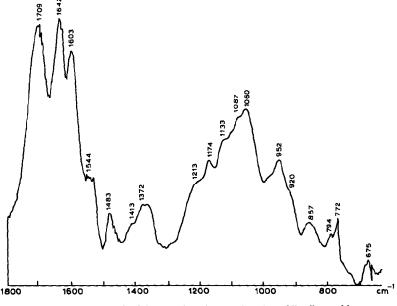



Fig. 5. F.t.-i.r. spectrum of solid guanosine 2'-monophosphate (disodium salt).

sugar residue remain at almost the same frequencies whereas the modes assignable to the base residue are shifted or masked.

Ribonucleosides and nucleotides. — Comparison of the F.t.-i.r. spectrum of cytidine 5'-monophosphate (Fig. 2) with that of cytidine 10 shows that most vibrations of the nucleoside are also observed for the nucleotide. When the phosphate group is at C-5', the ring vibrations of the sugar are less affected than when this group is in the 2' or 3' position. The phosphate group at position 5' is more free 12 and interacts with the guanine residue and the neighboring ribosyl groups in guanosine 5'-monophosphate (5'GMP). The phosphate group stabilizes the structure of 5'GMP by intramolecular hydrogen-bonding. On comparing the spectra of guanosine 2'-monophosphate (2'GMP) (see Fig. 5) and guanosine (ref. 1), it may be observed that the bands assigned to the sugar<sup>1</sup> in the frequency range 1300-900 cm<sup>-1</sup> appear only as shoulders in the i.r. spectrum of 2'GMP. The principal vibrations of the sugar-phosphate backbone are observed<sup>13</sup> in the 1350-950 cm<sup>-1</sup> region. Overlapping of the two bands from the phosphate group in this region of the spectrum, and the possibility of intramolecular H-bonding (especially between the 2'-phosphate group and 3'-OH), contributes to broadening of absorptions and absence of the exocyclic vibrations from D-ribose. The phosphate vibration was localized13 at 1230 cm-1 in the spectrum of yeast RNA and was supposed to originate from interactions of the phosphate group with the folding of the helix and from hydrogen bonding with such neighboring groups as the 2'-OH group of pribose. Such binding leads to a stabilized structure of the macromolecule.

Inspection of the spectra of the mononucleotide 2'-GMP (Fig. 5) and the polynucleotide poly[G] (Fig 6) reveals that the bands in the 1300–900 cm<sup>-1</sup> frequency region are more broad and overlapped for the mononucleotide. This could be because the phosphate group is in the 5'-position in poly(guanylic acid) (poly[G]). Indeed, in the 5'-position, the phosphate group interacts with guanine rings and the adjacent ribose group, stabilizing the structure of the polynucleotide. Besides symmetric and antisymmetric bending of the PO<sub>2</sub> group at 1245 and 1068 cm<sup>-1</sup>, respectively, vibrations of the nucleoside constituent (guanosine) of poly[G] are found at frequencies (see Table V) comparable to those observed<sup>1</sup> in the i.r. spectrum of pure guanosine.

Likewise, the spectrum of poly(adenylic acid) (poly[A]) (Fig. 4) shows a number of absorptions similar to those of adenine<sup>8</sup>. Such a resemblance was also observed<sup>14</sup> on comparison of the i.r. spectra of AMP (adenosine 5'-monophosphate) and poly[A] in aqueous solution. The Raman spectra of adenosine and AMP in solution were found<sup>15</sup> to be very similar, except for a band at 980 cm<sup>-1</sup> assigned to phosphate stretching. The sugar-phosphate backbone gives rise to weak and broad Raman lines in the  $1100-800 \text{ cm}^{-1}$  frequency region in the spectra of cytosine derivatives<sup>15</sup>. When the ribose-phosphate-ribose chain links two different bases as in cytidylyl-(2' $\rightarrow$ 5')-guanosine (Fig. 3) or guanylyl-(3' $\rightarrow$ 5')-adenosine (Fig. 1), the phosphate groups are readily characterized by two absorptions at about 1230 and  $1075 \text{ cm}^{-1}$  of relatively strong intensities. Such a result is probably due to the fact

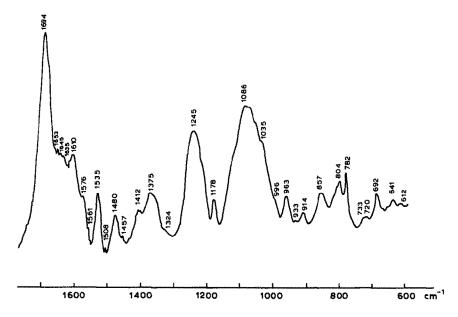



Fig. 6. F.t.-i.r. spectrum of solid poly[G] [poly(5'-guanylic acid) potassium salt, lyophilized].

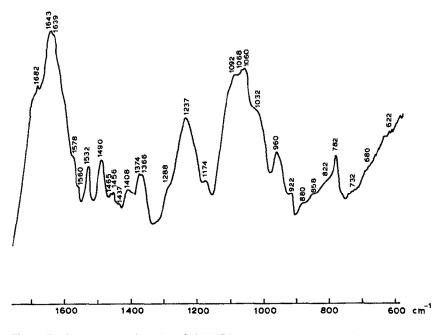



Fig. 7. F.t.-i.r. spectrum of solid poly[d(G-C)] (polydeoxycytidylic acid, sodium salt).

TABLE IV

BANDS OBSERVED<sup>a</sup> IN THE F.T.-I.R. SPECTRUM OF POLY[A]

| D-Ribose     | Adenine | Adenosin <b>e</b> | Poly[A] | Assignments                 |
|--------------|---------|-------------------|---------|-----------------------------|
|              |         |                   | 539     |                             |
|              | 622     |                   |         |                             |
| 628          |         | <b>600</b>        |         |                             |
| 655          | 642     | 638               | 649     | P[8/O 4 C 1 O 1)]           |
| 633          |         | 665               | 049     | R[δ(O-4-C-1-O-1)]           |
|              | 668     | 670               |         |                             |
|              | 000     | 705               |         |                             |
| 725          | 725     | 720               | 724     | $A[\nu(C-C), \nu(C-N)] + R$ |
| 750          |         |                   |         | [8(C-C-O)]                  |
| 750          |         | 768               |         |                             |
|              | 800     | 795               | 798     | A[\(\nu(C-C))]              |
| 804          | 000     | 125               | 770     | April Con                   |
|              |         | 820               |         |                             |
|              |         | -                 | 827     | P                           |
|              |         | 842               |         |                             |
|              | 850     |                   |         |                             |
|              |         | 858               |         |                             |
| 866          |         |                   |         |                             |
| 000          | 874     |                   | 871     | Α                           |
| 890          |         | 902               |         |                             |
| 910          | 913     | 902               | 912     | $A + R[\nu(C-C)]$           |
| 922          | 713     |                   | 712     | A + 1(((C-C))               |
| , <b></b>    | 940     |                   | 937     | $A[\delta(N-C=N)]$          |
| 950          |         |                   |         | -4-())                      |
| 957          |         |                   |         |                             |
|              |         | 965               | 963     | Ad                          |
|              |         | 977               |         |                             |
|              |         |                   | 992     | P                           |
| 1017         |         | 1010              |         |                             |
| 1016<br>1035 |         | 1025              | 1021    | D : AJ                      |
| 1033         |         | 1035<br>1055      | 1031    | R + Ad                      |
|              |         | 1070              | 1072    | Ad                          |
| 1076         |         | 10/0              | 1072    | 710                         |
| 1086         |         | 1090              | 1092    | Ad                          |
|              |         | 1107              |         |                             |
| 1116         |         |                   |         |                             |
|              | 1126    | 1126              |         |                             |
| 1135         |         | 1140              |         |                             |
| 1150         | 4477    |                   |         |                             |
| 1160         | 1156    |                   |         |                             |
| 1175         |         | 1178              | 1176    | R + Ad                      |
| 11/3         |         | 1208              | 11/0    | N T Au                      |
| 1220         |         | 1224              |         |                             |
| 1245         | 1254    | 1250              | 1245    | $R + A[\nu(C-NH_2)]$        |
| 1280         |         |                   |         |                             |
|              |         | 1302              | 1302    | Ad                          |
|              | 1310    |                   |         |                             |
|              |         |                   |         |                             |

Table IV (continued)

| D-Ribose | Adenine | Adenosine | Poly[A] | Assignments                                |
|----------|---------|-----------|---------|--------------------------------------------|
| 1315     |         |           |         |                                            |
| 1320     |         |           |         |                                            |
| 1340     | 1336    | 1333      | 1337    | $R + A[\nu(C-N), \nu(C=N)]$                |
|          |         | 1353      |         |                                            |
| 1365     | 1370    | 1370      | 1375    | $R + A[\delta(C-8-H), \delta(C-2-H)]$      |
| 1380     |         |           |         |                                            |
|          |         | 1388      |         |                                            |
| 1415     | 1420    | 1415      | 1420    | $R + A[\delta(N=CH)]$                      |
|          |         | 1425      | 1424    | Ad                                         |
| 1440     |         |           | 1435    | R                                          |
| 1455     | 1453    |           | 1457    | $R[\delta(CH_2)] + A[\nu(imidazole ring)]$ |
|          | 1470    | 1475      | 1480    | A                                          |
|          | 1510    | 1505      | 1508    | A                                          |
|          |         |           | 1542    |                                            |
|          |         |           | 1562    |                                            |
|          |         | 1573      | 1576    | Ad                                         |
|          | 1606    | 1605      | 1606    | $A[\nu(C=N),\nu(C=C)]$                     |
|          |         |           | 1618    |                                            |
| 1635     |         |           | 1637    | <b>R[δ(H₂O)]</b>                           |
|          |         |           | 1647    |                                            |
|          |         |           | 1653    |                                            |
|          | 1675    | 1665      |         |                                            |

\*Key:  $\delta$  = bending mode;  $\nu$  = stretching mode; A = adenine; Ad = adenosine (for A and Ad, detailed assignments are given in ref. 8); R = D-ribose (detailed assignments are given in ref. 7); P = phosphate.

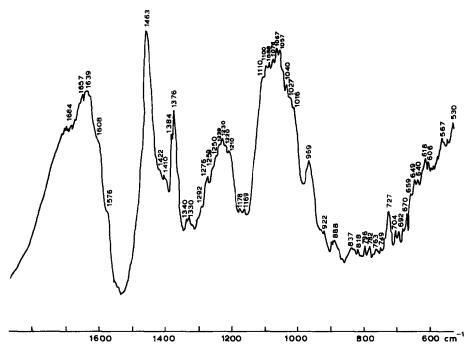



Fig. 8. F.t.-i.r. spectrum of solid poly[d(A-T).d(A-T)] [poly(deoxyadenylic-thymidylic acid), sodium salt].

TABLE V  $\label{eq:bands} \text{Bands observed}^{\mathfrak{a}} \text{ in the f.t.-i.r. spectrum of poly}[G]$ 

| D-Ribose   | Guanine | Guanosine  | Guanosine<br>2'-mono-<br>phosphate | Poly[G] | Assignments            |
|------------|---------|------------|------------------------------------|---------|------------------------|
|            | 603     |            |                                    |         |                        |
|            |         | 610        |                                    | 610     | C                      |
| 628        |         |            |                                    | 618     | G                      |
| 020        | 648     |            |                                    | 641     | G (breathing)          |
| 655        |         | 655        |                                    |         | ( 3,                   |
|            |         | 670        |                                    |         |                        |
|            |         | 675        | 675                                |         |                        |
|            | 690     | 692        |                                    | 692     | G                      |
|            | 704     | 700        |                                    |         |                        |
|            |         | 708        |                                    | <b></b> |                        |
|            |         | 718        |                                    | 720     | Go                     |
| 725        | 727     | 740        |                                    | 733     | $G + R[\delta(C-C-O)]$ |
| 750        |         | 740<br>752 |                                    |         |                        |
| 750        |         | 132        | 772                                |         |                        |
|            | 780     | 780        | 112                                | 782     | G                      |
|            | 790     |            | 794                                |         |                        |
| 804        | ,,,,    | 800        |                                    | 804     | $R[\delta(C-C-O)]$     |
|            |         | 826        |                                    |         |                        |
|            | 852     | 860        | 857                                | 857     | G[ν(C-C)]              |
| 866        |         |            |                                    |         |                        |
|            | 880     | 885        |                                    |         |                        |
| 890        | 000     |            |                                    |         |                        |
| 010        | 900     |            |                                    | 014     | B[-(C C)]              |
| 910<br>922 |         | 922        | 920                                | 914     | $R[\nu(C-C)]$          |
| 744        |         | 722        | 920                                | 933     | P                      |
| 950        | 950     |            | 952                                | ,,,,    | -                      |
| 957        |         |            |                                    | 963     | R                      |
|            |         | 1005       |                                    | 996     | Go                     |
| 1016       |         |            |                                    |         |                        |
|            | 1025    |            |                                    |         |                        |
| 1035       |         |            |                                    | 1035    | R                      |
|            | 1043    | 1045       |                                    |         |                        |
|            |         | 1053       | 1060                               |         |                        |
| 1076       |         | 1065       | 1060                               |         |                        |
| 1086       |         | 1085       | 1087                               | 1086    | R                      |
| 1116       | 1120    | 1003       | 1001                               | 1000    | A7                     |
| 1135       | 1220    | 1135       | 1133                               |         |                        |
| 1150       | 1150    |            |                                    |         |                        |
| 1160       |         |            |                                    |         |                        |
| 1175       | 1175    | 1182       | 1174                               | 1178    | $G[\delta(C-8-H)] + R$ |
|            | 1216    | 1210       | 1213                               |         |                        |
| 1220       |         |            |                                    |         |                        |
| 40.45      |         | 1228       |                                    | 1045    | <b>.</b>               |
| 1245       | 1061    | 1250       |                                    | 1245    | R                      |
|            | 1264    | 1262       |                                    |         |                        |

Table V (continued)

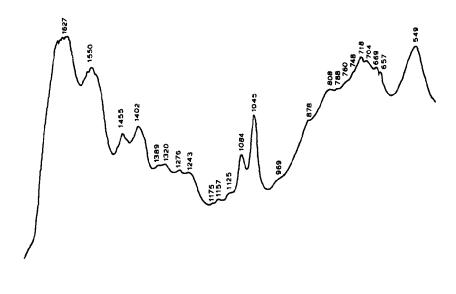
| D-Ribose | Guanine | Guanosine | Guanosine<br>2'-mono-<br>phosphate | Poly[G] | Assignments                          |
|----------|---------|-----------|------------------------------------|---------|--------------------------------------|
| 1280     |         | 1280      |                                    |         |                                      |
| 1315     |         |           |                                    |         |                                      |
| 1320     |         | 1325      |                                    | 1324    | $R[w(CH_2)]$                         |
| 1340     |         | 1340      |                                    |         |                                      |
|          |         | 1355      |                                    |         |                                      |
| 1365     |         |           |                                    |         |                                      |
|          | 1375    |           | 1372                               | 1375    | G[δ(C-8–N–H),<br>δ(C-8–H), ν(C-8–N)] |
| 1380     |         |           |                                    |         |                                      |
|          |         | 1400      |                                    |         |                                      |
| 1415     |         |           | 1413                               | 1412    | R                                    |
|          | 1420    |           |                                    |         |                                      |
|          |         | 1430      |                                    |         |                                      |
| 1440     |         |           |                                    |         |                                      |
| 1455     |         |           |                                    | 1457    | R[8(CH <sub>2</sub> )]               |
|          | 1465    |           |                                    |         | 1 \ 2/1                              |
|          | 1480    | 1490      | 1483                               | 1480    | G[ν(N-7≕C-8) and<br>ν(C-8–N-9)]      |
|          |         |           |                                    | 1508    | ` '-                                 |
|          |         | 1540      | 1544                               | 1535    | Go                                   |
| 1554     |         |           |                                    | 1561    | $G[\nu(C=C)]$                        |
|          | 1566    | 1570      |                                    | 1576    | $G[\nu(C-2=N-3)]$                    |
|          |         |           | 1603                               |         |                                      |
|          |         | 1615      |                                    | 1610    | Go                                   |
| 1635     |         | 1630      |                                    | 1635    | $R[\delta(H_2O)]$                    |
|          | 1640    | 1645      | 1642                               | 1645    | G``'                                 |
|          |         |           |                                    | 1653    |                                      |
|          | 1676    | 1675      |                                    |         |                                      |
|          |         |           |                                    | 1694    |                                      |
|          | 1700    |           | 1709                               |         |                                      |
|          |         | 1736      |                                    |         |                                      |

<sup>α</sup>Key:  $\delta$  = bending mode;  $\nu$  = stretching mode; G = guanine; Go guanosine (for G and Go, detailed assignments are given in ref. 1); R = D-ribose (detailed assignments are given in ref. 7); P = phosphate.

that when phosphate groups are strongly held by covalent bonds, the bands corresponding to their vibrations are well resolved and have less influence on the rest of the spectrum.

2-Deoxyribopolynucleotides.—The F.t.-i.r. spectrum of poly[d(G-C)] is shown in Fig. 7. It was expected that the vibrations of 2-deoxyribose should be detectable in Fig. 7. However comparison of Fig. 7 with previous results on 2-deoxy-D-ribose<sup>7</sup> leads to the conclusion that phosphate vibrations in the 1300-900-cm<sup>-1</sup> range mask the characteristic i.r. bands of the sugar. Even CH<sub>2</sub> deformations in sugar, corresponding to bands in the 1500-1300-cm<sup>-1</sup> region, have relatively weak to moderate intensities. This is probably because the helical structure of poly[d(G-C)] allows a higher freedom to the vibrations from the deoxy sugar, causing frequency shifts

TABLE VI


BANDS OBSERVED<sup>a</sup> IN THE F.T.-I.R. SPECTRUM OF POLY[G-C]

| 2-Deoxy-<br>p-ribose | Guanine     | Cytosine | Poly[d(C-G)] | Assignments                                     |
|----------------------|-------------|----------|--------------|-------------------------------------------------|
|                      |             |          | 529          |                                                 |
|                      |             |          | 570          |                                                 |
|                      | 603         | 602      |              |                                                 |
| 633                  |             |          | 622          |                                                 |
| 033                  | <i>21</i> 0 |          |              |                                                 |
| <b>670</b>           | 648         |          | <b>700</b>   | <b>D</b>                                        |
| 672                  |             |          | 680          | D                                               |
| 686                  | 690         |          |              |                                                 |
|                      | 704         | 700      |              |                                                 |
|                      | 727         |          | 732          | G                                               |
| 740                  |             |          |              |                                                 |
| 760                  |             | 758      |              |                                                 |
| 770                  |             |          |              |                                                 |
|                      | 780         | 783      | 782          | $G + C[\nu(ring)]$                              |
|                      | 790         | 794      |              | - · -[- ( <del>0</del> /1                       |
| 815                  | ,,,,        | 822      | 822          | $C[\delta(N-H)] + D[\nu(C-C)]$                  |
| 912                  | 852         | 622      | 859          | $G[\nu(C-C)]$                                   |
| 200                  |             |          |              |                                                 |
| 880                  | 880         |          | 880          | G + D                                           |
| 896                  |             |          |              | _                                               |
| 926                  |             |          | 922          | D                                               |
|                      | 950         |          |              |                                                 |
|                      |             | 966      | 960          | C[v(C-4-C-5)]                                   |
| 985                  |             |          |              |                                                 |
|                      |             | 995      |              |                                                 |
|                      |             | 1012     |              |                                                 |
| 1017                 |             | 1012     |              |                                                 |
| 1017                 |             |          | 1000         | n.                                              |
|                      |             |          | 1032         | P                                               |
| 1045                 | 1043        |          |              | _                                               |
|                      |             |          | 1060         | P                                               |
|                      |             |          | 1068         | P                                               |
| 1092                 |             |          | 1092         | D                                               |
|                      |             | 1100     |              |                                                 |
| 1116                 |             |          |              |                                                 |
|                      | 1120        |          |              |                                                 |
| 1152                 | 1150        | 1155     |              |                                                 |
|                      | 1175        | 1100     | 1174         | G[δ(C-8-H)]                                     |
| 1200                 | 11/5        |          | 11/4         | 0[0(0 0.11)]                                    |
| 1200                 | 1216        |          |              |                                                 |
| 1007                 | 1216        | 1040     | 1027         | CF (C A N A) L D                                |
| 1236                 |             | 1240     | 1237         | $C[\nu(C-4-N-4)] + D$                           |
| 1260                 |             |          |              |                                                 |
|                      | 1264        |          |              | _                                               |
| 1280                 |             | 1280     | 1288         | $C[\nu(C-2-N-1) \text{ and } \nu(C-6-N-1)] + D$ |
| 1303                 |             |          |              |                                                 |
| 1344                 |             |          |              |                                                 |
| 1350                 |             |          |              |                                                 |
| 1370                 |             | 1366     | 1366         | $C[\delta(C=C-H)] + D$                          |
|                      | 1375        | 1000     | 1374         | G[&(C-8-N-H), &(C-8-H), \(\nu(C-8-N)\)]         |
| 1300                 | 13/3        |          | 13/4         | ~[v(C-0-11-11), v(C-0-11), v(C-0-11)]           |
| 1390                 |             |          | 1.400        | D                                               |
| 1415                 | 4400        |          | 1408         | D                                               |
|                      | 1420        |          |              |                                                 |
|                      |             |          |              |                                                 |

Table VI (continued)

| 2-Deoxy-<br>D-ribose | Guanine | Cytosine | Poly[d(C-G)] | Assignments                                                         |
|----------------------|---------|----------|--------------|---------------------------------------------------------------------|
| 1440                 |         |          | 1437         | D                                                                   |
|                      |         |          | 1456         |                                                                     |
| 1470                 | 1465    | 1469     | 1465         | C[\(\nu(C-4-N-3)\), \(\nu(C-2-N-3)\)] +<br>G[\(\delta(C-N-H)\)] + D |
|                      | 1480    |          | 1490         | $G[\nu(N-\&=C-(), \nu(C-8-N-9)]$                                    |
|                      |         | 1505     |              |                                                                     |
|                      |         | 1540     | 1532         | C[δ(N-H)]                                                           |
|                      | 1554    |          | 1560         | $G[\nu(C=C)]$                                                       |
|                      | 1566    |          |              |                                                                     |
|                      |         |          | 1578         |                                                                     |
|                      |         | 1616     |              |                                                                     |
| 1635                 | 1640    | 1635     | 1639         | $C + G + D[\delta(H_2O)]$                                           |
|                      |         |          | 1643         | C+G+D                                                               |
|                      |         |          | 1649         |                                                                     |
|                      |         | 1667     |              |                                                                     |
|                      | 1676    |          | 1682         |                                                                     |
|                      | 1700    | 1705     | 1696         | $C[\delta(NH_2)] + G[\nu(C=O), \delta(NH_2)]$                       |

\*Key:  $\delta$  = bending mode;  $\nu$  = stretching mode; C = cytosine (detailed assignments are given in ref. 10); D = 2-deoxy-D-erythro-pentose (detailed assignments are given in ref. 7); P = phosphate.



1600 1400 1200 1000 800 600 cm<sup>-1</sup>

Fig. 9. F.t.-i.r. spectrum of crab DNA.

TABLE VII

BANDS OBSERVED<sup>d</sup> IN THE F.T.-I.R. SPECTRUM OF POLY[d(AT).d(AT) AND THE CRAB DNA

| 2-Deoxy-<br>D-ribose | Adenine    | Thymine | Poly[d(AT). $d(AT)]$ | Crab DNA      | Assignments                   |
|----------------------|------------|---------|----------------------|---------------|-------------------------------|
|                      | 622        | 616     | 618                  |               | A[δ(N-C-C)] + T               |
| <b></b>              |            |         |                      |               | [δ(N-C-C)]                    |
| 633                  | 642        |         | 410                  |               | •                             |
|                      | 642        |         | 640<br>649           |               | A                             |
|                      |            | 659     | 657                  |               |                               |
| 672                  | 668        | 057     | 670                  | 669           | A + D                         |
| 686                  | 000        |         | 692                  | 003           | R                             |
|                      |            |         | 704                  | 704           |                               |
|                      | 725        |         | 727                  | 718           | $A[\nu(C-C), \nu(C-N)]$       |
| 740                  |            | 740     |                      | 743           | $T[\delta(C-H)] + D$          |
|                      |            |         | 749                  |               |                               |
| <b>76</b> 0          |            | 760     | 763                  | 760           | $T[\nu(C-5-CH_3)]$            |
| <i>7</i> 70          |            |         |                      |               |                               |
|                      |            |         | 782                  | 788           |                               |
| 0.15                 | 800        | 04.4    | 796                  | 808           | $A[\nu(C-C)]$                 |
| 815                  |            | 814     | 818                  |               | $T[\nu(C-4-C-5)] + D$         |
|                      |            | 045     | 027                  |               | [\nu(C-C)]                    |
|                      | 950        | 845     | 837                  |               | $T[\delta(N-H)]$              |
|                      | 850<br>874 |         |                      | 878           | A                             |
| 880                  | 0/4        |         | 888                  | 676           | D                             |
| 896                  |            |         | 000                  |               | D                             |
| 050                  | 913        |         |                      |               |                               |
| 926                  | 715        |         | 922                  |               | D                             |
|                      |            | 935     |                      |               | _                             |
|                      | 940        |         |                      |               |                               |
|                      |            |         | 969                  | 969           | P                             |
| 985                  |            | 983     |                      |               |                               |
| 1017                 |            |         | 1016                 |               | D                             |
|                      | 1025       | 1030    | 1027                 |               | $A[\delta(C-N-C)] + T$        |
|                      |            |         |                      |               | [&(C-N-H)]                    |
| 1045                 |            | 4070    | 1040                 | 1045          | D                             |
|                      |            | 1050    | 1057                 |               | Τ[δ(N–C–H)]                   |
|                      |            |         | 1067<br>1076         |               | P<br>P                        |
| 1092<br>1116         |            |         | 1076                 | 1084          | r<br>D                        |
|                      |            |         | 1100                 | 1004          | P                             |
|                      |            |         | 1110                 |               | D                             |
|                      | 1126       |         | 1110                 | 1125          | $A[\delta(C-2-N-1=C-6)]$ and  |
|                      |            |         |                      | 11-0          | $\delta(\text{C-5-N-7=C-8})]$ |
| 1152                 | 1156       | 1152    |                      | 1157          | $A[\delta(C-H) + T[r(CH_3)]$  |
|                      |            |         | 1169                 |               |                               |
|                      |            |         | 1178                 | 11 <b>7</b> 5 |                               |
| 1200                 |            | 1204    |                      |               |                               |
|                      |            | 1215    | 1210                 |               | $T[\nu(C-N)]$                 |
|                      |            |         | 1220                 |               | P                             |
| 1236                 |            | 48.5    | 1231                 |               | D                             |
|                      | 405.       | 1246    | 1239                 | 1243          | $T[\delta(C-5=C-6-H)]$        |
|                      | 1254       |         | 1250                 |               | $A[\nu(C-NH_2)]$              |

Table VII (continued)

| 2-Deoxy-<br>D-ribose | Adenine | Thymine | Poly[d(AT)] $d(AT)]$ | Crab DNA | Assignments                           |
|----------------------|---------|---------|----------------------|----------|---------------------------------------|
| 1260                 |         | 1260    | 1259                 |          | $T[\nu(C-N)] + D$                     |
| 1280                 |         |         | 1276                 | 1276     | D "                                   |
|                      |         |         | 1292                 |          |                                       |
| 1303                 | 1310    |         | 1308                 |          | $A[\nu(C-N), \nu(C=N)] + D$           |
|                      | 1336    |         | 1330                 |          | $A[\nu(C-N), \nu(C=N)]$               |
| 1344                 |         |         | 1340                 | 1339     | D "                                   |
| 1350                 |         |         |                      |          |                                       |
| 1370                 | 1370    |         | 1376                 |          | $A[\delta(C-8-H), \delta(C-2-H)] + D$ |
|                      |         | 1382    | 1384                 |          | T[δ(CH <sub>3</sub> )]                |
| 1390                 |         |         |                      |          | 1 3/1                                 |
|                      |         |         |                      | 1402     |                                       |
|                      |         | 1410    | 1410                 |          | Т                                     |
| 1415                 |         |         |                      |          |                                       |
|                      | 1420    |         | 1422                 |          | <b>A[δ(N=CH)]</b>                     |
|                      |         | 1430    |                      |          |                                       |
| 1440                 |         | 1448    |                      |          |                                       |
|                      | 1453    |         |                      | 1455     | A [imidazole ring]                    |
| 1470                 | 1470    |         | 1463                 |          | A + D                                 |
|                      |         | 1482    |                      |          |                                       |
|                      |         | 1492    |                      |          |                                       |
|                      | 1510    |         |                      |          |                                       |
|                      |         |         |                      | 1550     |                                       |
|                      |         |         | 1576                 |          |                                       |
|                      | 1606    |         | 1608                 |          |                                       |
| 1635                 |         |         | 1639                 | 1627     | A                                     |
|                      |         |         | 1657                 |          |                                       |
|                      | 1675    | 1680    | 1684                 |          | $A[\delta(NH_2)] + T$                 |
|                      |         |         |                      |          | $[\nu(C-5=C-6)]$                      |
|                      |         |         | 1700                 |          |                                       |
|                      |         | 1735    |                      |          |                                       |

<sup>\*</sup>Key:  $\delta$  = bending mode;  $\nu$  = stretching mode; r = rocking mode; A = adenine (detailed assignments are given in ref. 8); D = 2-deoxy-D-erythro-pentose (detailed assignments are given in ref. 7); D = phosphate.

and lowering of intensities. One of the most characteristic and intense vibrations of 2-deoxyribose, located at 815 cm<sup>-1</sup> in the i.r. spectrum and 812 cm<sup>-1</sup> in the Raman spectrum<sup>8</sup>, is shifted towards lower frequency (782 cm<sup>-1</sup>) in the spectrum of poly[d(G-C)] (see Fig. 7 and Table VI).

It is known<sup>16</sup> that left-handed Z-structure may be induced in DNA and polynucleotides containing alternating G-C base-pairing sequences. In the Z-structure, the glycosidic linkage ( $\chi_{C-N}$ ) of guanine bases are in the anti-disposition about the glycosidic linkage and have the C-2'endo (or C-3'endo) puckering for the sugar<sup>17-23</sup>. Such changes in conformation could account for the shifts of frequencies observed in the F.t.-i.r. spectrum of poly[d(G-C)] (Fig. 7). These comments on the i.r. spectra (Fig. 1-7) of mono-, oligo-, and poly-nucleotides attempt to show that detailed interpretation of the spectra of simple constituents of nucleic acids

helps in understanding the structural features manifested in the spectra of polynucleotides and nucleic acids. The F.t.-i.r. data should also be correlated with that from other physicochemical techniques (calorimetry, viscometry, n.m.r. spectroscopy, crystallography, u.v. spectroscopy) in order to consolidate the conformational interpretations.

B. Synthetic and natural DNA. — The F.t.-i.r. spectra of poly[d(A-T).d(A-T)] and crab DNA are shown in Figs. 8 and 9, respectively. The difference in background between the two spectra is probably attributable to the hydration of the natural DNA. The spectrum of crab DNA was compared with that of poly[d(A-T.d(A-T]) because it has been observed<sup>24</sup> that DNA isolated from crab gonad is extremely rich (~80%) in d(A-T) base-pairing.

The frequency region above 1500 cm<sup>-1</sup>, which is certainly influenced by the binding of water, shows an intensity maximum at 1630-1640 cm<sup>-1</sup>, comparable in width and intensity in both spectra. The presence of liquid water and base pairs other than (A-T) (~20%) are at the origin of the differences between the two spectra. However, it may be observed (Table VII) that most of the frequencies observed in the crab DNA spectrum are found in the spectrum of poly[d(A-T).d(A-T)] and could be assigned to A, D, T, or P, the major constituents of the polynucleotide. Hydrogen bonding is generally more important in the presence of water. It is at the origin of the B-structure of DNA and contributes in enhancing the stability of the double helix25. However, such weak interactions as water-water and water-nucleic acid binding generally lead to broadening of bands and shifts in frequencies. All vibrations of groups capable of binding to water are affected by hydration. It is the case for phosphate groups, which give rise to two major bands at 1230 and 1067 cm<sup>-1</sup> in the spectrum of the synthetic polynucleotide (Fig. 8), whereas only one band is observed in the spectrum of crab DNA (Fig. 9). The general appearance of the spectrum of poly[d(A-T).d(A-T)] between 1300 and 900 cm<sup>-1</sup> recalls the spectra of other synthetic nucleotides (see Figs. 1-7).

Another frequency region affected by hydration of DNA is the local-symmetry region (1300–1500 cm<sup>-1</sup>), where CH<sub>2</sub> vibrations are found. The difference between spectra of poly[d(A-T).d(A-T)] and DNA mainly concerns the intensities of frequencies observed at 1398, 1402, and 1455 cm<sup>-1</sup>. Hydration was found<sup>26</sup> to be more important in the monolayer directly linked to A-T sequences than it is to G-C base-pairing sequences. Variation in base-pair composition along the polynucleotide chain gives rise to differences in local potentials, which are at the origin of differences in water association to the helix grooves<sup>26</sup>.

# CONCLUSION

Comparison of the F.t.-i.r. spectra of polynucleotides with Raman and i.r. spectra of their monomeric constituents permitted assignments of the observed frequencies. Structural modifications caused by puckering of the sugars or by intramolecular binding of phosphate groups give rise to shifts of frequencies and de-

creases in intensities of the observed bands. Comparison of the i.r. absorptions from a synthetic and a natural DNA clearly shows the important influence of hydration on the vibrations of groups of polar atoms. Although the environment of the vibrating tensors changes when the degree of complexity of the molecule increases, most of the characteristic i.r. bands remain recognizable and assignable by comparison with the spectra of pure monomeric compounds.

#### **ACKNOWLEDGMENTS**

The authors thank Dr. B. Jasse (Ecole Supérieure de Physique et Chimie de la Ville de Paris) for assistance in recording the F.t.-i.r. spectra and Prof. E. Guillé (Université Paris-Sud Orsay) for the gift of crab DNA.

### REFERENCES

- 1 M. MATHLOUTHI, A. M. SEUVRE, AND J. L. KOENIG, Carbohydr. Res., 146 (1986) 15-27.
- 2 J. L. KOENIG, Acc. Chem. Res., 14 (1981) 171-178.
- 3 R. S. TIPSON, Adv. Carbohydr. Chem., 1 (1945) 193-245.
- 4 R. S. TIPSON, N.B.S. Monograph 110, U.S. Department of Commerce, National Bureau of Standards, 1968, pp. 1-21.
- 5 P. A. LEVENE AND R. S. TIPSON, J. Biol. Chem., 93 (1931) 623-630; 94 (1934) 809-819; 97 (1932) 491-495; 109 (1935) 623-630; Science, 81 (1935) 98.
- 6 R. S. TIPSON AND F. S. PARKER, in W. PIGMAN, D. HORTON AND J. D. WANDER (Eds.), *The Carbohydrates*, Vol. IB, Academic Press, New York, 1980, pp. 1394-1436.
- 7 M. MATHLOUTHI, A. M. SEUVRE, AND J. L. KOENIG, Carbohydr. Res., 122 (1983) 31-47.
- 8 M. MATHLOUTHI, A. M. SEUVRE, AND J. L. KOENIG, Carbohydr. Res., 131 (1984) 1-15.
- 9 M. MATHLOUTHI, A. M. SEUVRE, AND J. L. KOENIG, Carbohydr. Res., 134 (1984) 23-28.
- 10 M. MATHLOUTHI, A. M. SEUVRE, AND J. L. KOENIG, Carbohydr. Res., 146 (1986) 1-13.
- 11 E. GUILLÉ, J. GRISVARD, A. TUFFET, J. VILLAUDY, AND A. GOLDE, in S. BARLATI AND C. DE GIULI-MORGHEN (Eds.), Avian RNA Tumor Viruses, Piccin Medical Books, N.Y., 1977, pp. 26–34.
- 12 W. L. PETICOLAS, in G. L. CANTONI AND D. DAVIS (Eds.), *Proc. Nucleic Acid Res.*, Vol. 2, Harper and Row, New York, 1971, pp. 94-136.
- 13 M. SHIE, I. G. KHARITONENKOV, AND T. I. TIKHONENKO, Nature (London), 235 (1972) 386-388.
- 14 H. T. MILES AND J. FRAZIER, Biochemistry, 17 (1978) 2920-2927.
- 15 R. C. LORD AND G. J. THOMAS, JR., Spectrochim. Acta, Part A, 23 (1967) 2551-2591.
- 16 A. H. J. WANG, G. J. QUIGLEY, F. J. KOLPAK, J. L. CRAWFORD, J. H. VAN BOOM, G. A. VAN DER MAREL, AND A. RICH, *Nature (London)*, 282 (1979) 680-686.
- 17 M. SUNDARALINGAM AND E. WESTHOF, Int. J. Quantum Chem., Quantum Biol. Symp., 8 (1981) 287-306.
- 18 S. H. Kim, H. M. Berman, N. C. Seeman and M. D. Newton, Acta Crystallogr., Sect. B, 29 (1973) 703-710.
- 19 W. K. OLSON AND J. L. SUSSMAN, J. Am. Chem. Soc., 104 (1982) 270-278.
- 20 W. K. Olson, J. Am. Chem. Soc., 104 (1982) 278-286.
- 21 A. A. LUGOVSKII, V. G. DASHEVSKII, AND A. I. KITAIGORODSKII, Mol. Biol. (Moscow), 6 (1972) 449–456.
- 22 C. H. LEE AND R. H. SARMA, J. Am. Chem. Soc., 98 (1976) 3541-3548.
- 23 S. Arnott and D. W. L. Hukins, Biochem. J., 130 (1972) 453-456.
- 24 E. GUILLÉ, personal communication.
- 25 S. LEWIN, J. Theor. Biol., 17 (1967) 181-212.
- 26 J. TEXTER, Prog. Biophys. Molec. Biol., 33 (1978) 83-97.